Digital System Design

Objectives:

- 1. Four variables maps.
- 2. Simplification using prime implicants.
- 3. "Don't care" conditions.
- 4. Summary.

1. Four variables Karnaugh maps

A	B	С	D	Minterms
0	0	0	0	$\overline{A}\overline{B}\overline{C}\overline{D}$
0	0	0	1	ĀBCD
0	0	1	0	ĀBCD
0	0	1	1	ĀĒCD
0	1	0	0	ĀBĒD
0	1	0	1	ĀBĒD
0	1	1	0	ĀBCD
0	1	1	1	ĀBCD
1	0	0	0	ABCD
1	0	0	1	ABCD
1	0	1	0	ABCD
1	0	1	1	ABCD
1	1	0	0	AB ¯ C <u>¯</u> D
1	1	0	1	ABŪD
1	1	1	0	ABCD
1	1	1	1	ABCD

		$\mathbf{D} \overline{\mathbf{C} \mathbf{D}} \\ 0 0$	$\overline{C}D$ 01	CD 11	с <u></u> 10	
_	$\frac{00}{AB}$	m0 ABCD	m1 ABCD	m3 ABCD	m2 ABCD	
A	$\begin{array}{c} 01\\ \overline{AB} \end{array}$	<mark></mark>	_m5 ABCD	m7 ABCD	$\frac{\mathbf{m6}}{\overline{ABCD}}$	B
A	11 <i>AB</i>	m12 <i>ABCD</i>	m13 <i>ABCD</i>	m15 <i>ABCD</i>	m14 <i>ABCD</i>	
	$10 \\ A\overline{B}$	<mark>m8</mark> ABCD	m9 ABCD	m11 <i>ABCD</i>	$m10$ $A\overline{B}C\overline{D}$	
		\overline{D}	— <i>L</i>)	\overline{D}	

C D	00	01	11	10	CD	3	01	11	10
00	о	4	12	8	00	A' B' C' D'	A' B C' D'	A B C' D'	A B' C' D'
01	1	5	13	9	01	A'B'C'D	A'B C'D	ABC'D	A B' C' D
11	3	7	15	11	11	A'B'CD	A'BCD	ABCD	AB'CD
10	2	6	14	10	10	A' B' C D'	A' B C D'	ABCD'	A B' C D'

> The rows and columns are numbered in a gray code sequence.

- ✓ One square represents one minterm with four literals.
- ✓ Two adjacent squares represent one term with 3 literals.
- ✓ Four adjacent squares represent one term with 2 literals.
- ✓ Eight adjacent squares represent one term with 1 literal.

Examples:

Example 1: Simplify the Boolean function

 $F(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

Solution:

The simplified function:

$$F(w, x, y, z) = \overline{y} + \overline{w}\overline{z} + x\overline{z}$$

Example 2: plot the following 4-variable expression on a Karnaugh map

 $f(a, b, c, d) = acd + \overline{a}b + \overline{d}$

Solution:

Example 3: simplify the following function:

$$f(a, b, c, d) = \sum m(0, 2, 3, 5, 6, 7, 8, 10, 11, 14, 15)$$

Solution:

Example 4: For the following k-map with four variables, obtain the simplified logic expression:

 $Y = \overline{C}(\overline{A}\overline{B}\overline{D} + D) + A\overline{B}C + \overline{D}$

Solution:

• Multiply out

 $Y = \overline{A}\overline{B}\overline{C}\overline{D} + \overline{C}D + A\overline{B}C + \overline{D}$

• Fill the terms in k-map:

• Simplify:

 $Y = A\overline{B} + \overline{C} + \overline{D}$

2. Simplification using prime implicants

Definitions:

- Prime implicant (PI): is a product term obtained by combining the maximum possible number of adjacent squares in the map.
- Essential prime implicant: If a minterm in a square is covered by only one prime implicant that prime implicant is said to be essential, and it must be included in the final expression.

Note:

All of the prime implicants of a function are generally not needed in forming the minimum sum of products.

Procedure for selecting implicants:

- 1. Find essential prime implicants.
- 2. Find a minimum set of prime implicants which cover the remaining *l's* on the map.

Example 1:

- \checkmark $\overline{ABC}, \overline{ACD}, \overline{AC}$ are prime implicants.
- \checkmark \overline{ABCD} , \overline{ABC} , \overline{ABC} , \overline{ABC} are not prime implicants.

Example 2: find the minimum solution for the following Karnaugh map.

✓ AC, ACD, ABD are essential prime implicants, to complete the minimum solution, one of the non-essential prime implicants in needed:

✓ The final solution:

$$F = \overline{A}\overline{C} + \overline{A}\overline{B}\overline{D} + ACD + \{\overline{A}BD | BCD\}$$

Example 3:

$$F(A, B, C, D) = \sum m(0, 2, 3, 5, 7, 8, 9, 10, 11, 13, 15)$$

Simply using k-map:

Groups (terms number)	Implicants	Simplification			
1, 4, 13, 16	Essential prime implicant	$\overline{B}\overline{D}$			
6, 7, 10, 11	Essential prime implicant	BD			
3, 4, 15, 16	Prime implicant	B C			
3, 7, 11, 15	Prime implicant	CD			
10, 11, 14, 15	Prime implicant	AD			
13, 14, 15, 16	Prime implicant	$A\overline{B}$			
2 essentials and four prime implicants					

✓ **Square** 3 can be covered with either prime implicants CD or $\overline{B}C$.

✓ **Square** 14 can be covered with either prime implicants AD or $A\overline{B}$.

- ✓ *Square* 15 can be covered with any one of four prime implicants.
 - *Final solution:* two essential PI with any two prime implicants that cover minterms *3*, *14*, *15*: four possible ways:

1) $F = BD + \overline{B}\overline{D} + CD + AD$ 2) $F = BD + \overline{B}\overline{D} + CD + A\overline{B}$ 3) $F = BD + \overline{B}\overline{D} + \overline{B}C + AD$ 4) $F = BD + \overline{B}\overline{D} + \overline{B}C + A\overline{B}$

3. "Don't care" conditions

- Some logic circuits can be designed so that there are *certain input conditions for which there are no specified output levels* (can't happened).
- A circuit designer is *free* to make the output for any "*don't care condition*" either a *O* or a *1* in order to produce the simplest output.

Example 1: For the following truth table, use K-map to minimize the function Z

inputs			Output
A	B	С	Z(x, y, z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	X
1	0	0	X
1	0	1	1
1	1	0	1
1	1	1	1

Don't Care Condition

Solution:

Example 2: Design a logic circuit that controls an elevator door in a three-story building.

Solution:

M: Moving signal: (M = 1 : moving), (M = 0 : stopped), F1, F2, F3: Floor indicator signals.

Truth Table						
М	<i>F</i> 1	F2	F 3	Open		
0	0	0	0	0		
0	0	0	1	1		
0	0	1	0	1		
0	0	1	1	X		
0	1	0	0	1		
0	1	0	1	X		
0	1	1	0	X		
0	1	1	1	X		
1	0	0	0	0		
1	0	0	1	0		
1	0	1	0	0		
1	0	1	1	X		
1	1	0	0	0		
1	1	0	1	X		
1	1	1	0	X		
1	1	1	1	X		

Example 3: For the following logical expression, use K-map to minimize the function F.

 $F = \sum m(1, 3, 5, 7, 9) + \sum d(6, 12, 13)$

Solution:

4. Summary

- Looping a pair of adjacent 1's in a k-map eliminate the variable that appears in complemented and uncomplemented form.
- Looping a quad (4) of adjacent 1's eliminates the two variables that appear in complemented and uncomplemented form.
- Looping an octet (8) of adjacent 1's eliminates the three variables that appear in complemented and uncomplemented form.

• Looping groups of two pairs:

• Looping groups of four (quads):

• Looping groups of eight (octet):

