Digital System Design

 Kamnugh Mep Miethods IIObjectives:

1. Four variables maps.
2. Simplification using prime implicants.
3. "Don't care" conditions.
4. Summary.
5. Four variables Karnaugh maps

A	B	C	D	Minterms
0	0	0	0	$\bar{A} \bar{B} \bar{C} \bar{D}$
0	0	0	1	$\bar{A} \bar{B} \bar{C} D$
0	0	1	0	$\bar{A} \bar{B} C \bar{D}$
0	0	1	1	$\bar{A} \bar{B} C D$
0	1	0	0	$\bar{A} B \bar{C} \bar{D}$
0	1	0	1	$\bar{A} B \bar{C} D$
0	1	1	0	$\bar{A} B C \bar{D}$
0	1	1	1	$\bar{A} B C D$
1	0	0	0	$A \bar{B} \bar{C} \bar{D}$
1	0	0	1	$A \bar{B} \bar{C} D$
1	0	1	0	$A \bar{B} C \bar{D}$
1	0	1	1	$A \bar{B} C D$
1	1	0	0	$A B \bar{C} \bar{D}$
1	1	0	1	$A B \bar{C} D$
1	1	1	0	$A B C \bar{D}$
1	1	1	1	$A B C D$

C_{D}^{A}	OO	01	11	10	$C D$	00	07	11	10
00	\bigcirc	4	12	8	00	$A^{\prime} B^{\prime} C^{\prime} D^{\prime}$	$A^{\prime} B C^{\prime} D^{\prime}$	$A B C^{\prime} D^{\prime}$	$A B^{\prime} C^{\prime} D^{\prime}$
01	1	5	13	9	01	$A^{\prime} B^{\prime} C^{\prime} D$	$A^{\prime} B C^{\prime} D$	$A B C^{\prime} D$	$A B^{\prime} C^{\prime} D$
11	3	7	15	11	11	$A^{\prime} B^{\prime} C D$	$A B C D$	$A B C D$	$A B^{\prime} C D$
10	2	6	14	10	10	$A^{\prime} B^{\prime} C D^{\prime}$	$A^{\prime} B C D$	$A B C D^{\prime}$	$A B^{\prime} C D^{\prime}$

The rows and columns are numbered in a gray code sequence.
\checkmark One square represents one minterm with four literals.
\checkmark Two adjacent squares represent one term with 3 literals.
\checkmark Four adjacent squares represent one term with 2 literals.
\checkmark Eight adjacent squares represent one term with 1 literal.

Examples:

Example 1: Simplify the Boolean function

$$
F(w, x, y, z)=\sum(0,1,2,4,5,6,8,9,12,13,14)
$$

Solution:

The simplified function:

$$
F(w, x, y, z)=\bar{y}+\bar{w} \bar{z}+x \bar{z}
$$

Example 2: plot the following 4-variable expression on a Karnaugh map

$$
f(a, b, c, d)=a c d+\bar{a} b+\bar{d}
$$

Solution:

Example 3: simplify the following function:

$$
f(a, b, c, d)=\sum m(0,2,3,5,6,7,8,10,11,14,15)
$$

Solution:

Example 4: For the following k-map with four variables, obtain the simplified logic expression:

Example 5: Use a k-map to simplify

$$
Y=\bar{C}(\bar{A} \bar{B} \bar{D}+D)+A \bar{B} C+\bar{D}
$$

Solution:

Multiply out

$$
Y=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{C} D+A \bar{B} C+\bar{D}
$$

- Fill the terms in k-map:

- Simplify:

$$
Y=A \bar{B}+\bar{C}+\bar{D}
$$

2. Simplification using prime implicants

Definitions:

\checkmark Prime implicant (PI): is a product term obtained by combining the maximum possible number of adjacent squares in the map.
\checkmark Essential prime implicant: If a minterm in a square is covered by only one prime implicant that prime implicant is said to be essential, and it must be included in the final expression.

Note:

All of the prime implicants of a function are generally not needed in forming the minimum sum of products.

Procedure for selecting implicants:

1. Find essential prime implicants.
2. Find a minimum set of prime implicants which cover the remaining l 's on the map.

Example 1:

$\checkmark \bar{A} \bar{B} C, \bar{A} C \bar{D}, A \bar{C}$ are prime implicants.
$\checkmark \bar{A} \bar{B} \bar{C} \bar{D}, A \bar{B} C, A B \bar{C}$ are not prime implicants.

Example 2: find the minimum solution for the following Karnaugh map.

$\checkmark \bar{A} \bar{C}, A C D, \bar{A} \bar{B} \bar{D}$ are essential prime implicants, to complete the minimum solution, one of the nonessential prime implicants in needed:
\checkmark The final solution:

$$
F=\bar{A} \bar{C}+\bar{A} \bar{B} \bar{D}+A C D+\{\bar{A} B D \quad \mid B C D\}
$$

Example 3:

$$
F(A, B, C, D)=\sum m(0,2,3,5,7,8,9,10,11,13,15)
$$

Simply using k-map:

Groups (terms number)	Implicants	Simplification
$1,4,13,16$	Essential prime implicant	$\overline{\boldsymbol{B}} \overline{\mathbf{D}}$
$6,7,10,11$	Essential prime implicant	$\boldsymbol{B D}$
$3,4,15,16$	Prime implicant	$\overline{\mathbf{B}} \boldsymbol{C}$
$3,7,11,15$	Prime implicant	$\boldsymbol{C D}$
$10,11,14,15$	Prime implicant	$\boldsymbol{A D}$
$13,14,15,16$	Prime implicant	$\boldsymbol{A} \overline{\boldsymbol{B}}$
2 essentials and four prime implicants		

\checkmark Square 3 can be covered with either prime implicants $\boldsymbol{C D}$ or $\overline{\boldsymbol{B}} \boldsymbol{C}$.
\checkmark Square 14 can be covered with either prime implicants $\boldsymbol{A D}$ or $\boldsymbol{A} \overline{\boldsymbol{B}}$.
\checkmark Square 15 can be covered with any one of four prime implicants. - Final solution: two essential PI with any two prime implicants that cover minterms 3, 14, 15: four possible ways:

1) $F=B D+\bar{B} \bar{D}+C D+A D$
2) $F=B D+\bar{B} \bar{D}+C D+A \bar{B}$
3) $\boldsymbol{F}=\boldsymbol{B} \boldsymbol{D}+\overline{\boldsymbol{B}} \overline{\boldsymbol{D}}+\overline{\boldsymbol{B}} \boldsymbol{C}+\boldsymbol{A D}$
4) $F=B D+\bar{B} \bar{D}+\bar{B} C+A \bar{B}$

3. "Don't care" conditions

> Some logic circuits can be designed so that there are certain input conditions for which there are no specified output levels (can't happened).
> A circuit designer is free to make the output for any "don't care condition" either a \mathbf{O} or a $\mathbf{1}$ in order to produce the simplest output.

Example 1: For the following truth table, use K-map to minimize the function Z

inputs			Output
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$Z(\boldsymbol{x}, \boldsymbol{y}, \mathbf{z})$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	X
1	0	0	X
1	0	1	1
1	1	0	1
1	1	1	1

Don't Care Condition

Solution:

Example 2: Design a logic circuit that controls an elevator door in a three-story building.

Solution:

M: Moving signal: ($M=1$: moving), ($M=\mathbf{0}$: stopped), F1,F2,F3: Floor indicator signals.

Truth Table				
\boldsymbol{M}	$\boldsymbol{F 1}$	$F 2$	$F 3$	Open
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	X
0	1	0	0	1
0	1	0	1	X
0	1	1	0	X
0	1	1	1	X
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	X
1	1	0	0	0
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Example 3: For the following logical expression, use Kmap to minimize the function F.

$$
F=\sum m(1,3,5,7,9)+\sum d(6,12,13)
$$

Solution:

4. Summary

> Looping a pair of adjacent 1 's in a k -map eliminate the variable that appears in complemented and uncomplemented form.
$>$ Looping a quad (4) of adjacent 1 's eliminates the two variables that appear in complemented and uncomplemented form.
> Looping an octet (8) of adjacent 1 's eliminates the three variables that appear in complemented and uncomplemented form.

- Looping groups of two pairs:

- Looping groups of four (quads):

$\boldsymbol{X}=\boldsymbol{A} \overline{\boldsymbol{D}}$

$$
\boldsymbol{X}=\overline{\boldsymbol{B}} \overline{\boldsymbol{D}}
$$

- Looping groups of eight (octet):

